
CS3VI18 - Task 1

Lucille L. Blumire

February 18, 2019

The objective of this project is to classify as accurately as possible the ground level topology of
an area based on an aerial picture, as well as LIDAR response times and a Near-Infrared image.

This is to be done through means of supervised learning. A file providing actual ground level
topology has been provided alongside the image data. Samples will be taken from this for use
with a supervised learning technique, and can be used to assess the accuracy of the final result of
estimating the most likely ground level topology based on the image inputs.

1 Initial Setup

The initial setup serves mostly simply to establish the functions of the code, as well as initializing
certain configuration options. This culminates in the inputs images being graphically represented.

In [1]: # Import resources
import scipy.io as sio
import scipy.stats as sst
import matplotlib.pyplot as plt
import matplotlib.cm as pcm
import sklearn.metrics as skm
import numpy as np
import pandas as pd
from matplotlib.colors import LinearSegmentedColormap
from functools import reduce
from random import shuffle
from sklearn.mixture import GaussianMixture

Configure color maps
red_cmap = LinearSegmentedColormap('red_channel', segmentdata={

'red': [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0)],
'green': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)],
'blue': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)]

})
green_cmap = LinearSegmentedColormap('green_channel', segmentdata={

'red': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)],
'green': [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0)],
'blue': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)]

})
blue_cmap = LinearSegmentedColormap('blue_channel', segmentdata={

'red': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)],
'green': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)],
'blue': [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0)]

1

})
true_cmap = pcm.get_cmap("plasma", 4)

In [2]: # Import data
images = {

n: (e, plt.imread("res/" + n + ".bmp"), c)
for (n, e, c) in [

("r", "Red RGB", red_cmap),
("b", "Blue RGB", blue_cmap),
("g", "Green RGB", green_cmap),
("fe", "LIDAR First Echo", "viridis"),
("le", "LIDAR Last Echo", "viridis"),
("nir", "Near Infra-Red", "inferno"),

]
}
ground_truth = sio.loadmat("res/ground_truth.mat")["labelled_ground_truth"]

In [3]: # Create DataFrame of samples

data = {}
data["X"] = []
data["Y"] = []

for imagename, image in images.items():
data[image[0]] = []
for y in range(ground_truth.shape[0]):

for x in range(ground_truth.shape[1]):
data_magnitude = ground_truth.shape[0] * ground_truth.shape[1]
if (len(data["X"]) < data_magnitude):

data["X"].append(x)
data["Y"].append(y)

data[image[0]].append(image[1][y, x])

data = pd.DataFrame(data)

In [4]: # Output data for visual inspection
for (key, (name, value, colors)) in images.items():

fig = plt.figure()
plt.axis('off')
plt.title(f"Image: {name}")
plt.imshow(value, interpolation='nearest', cmap=colors)
plt.colorbar()

plt.figure()
plt.axis('off')
plt.title("MAT Data: Ground Truth")
plt.imshow(

ground_truth, interpolation='nearest',
origin='lower', cmap=true_cmap)

plt.colorbar(ticks=range(5))
plt.clim(0.5, 4.5)

2

The above images demonstrate the input data, and show a variety of common patterns that
we might expect the learning to pick up on. For example, road is consistently at a much lower
elevation as shown in the LIDAR responses, and foliage is more green.

3

2 Objective 1: Select training samples from the given source data based
on information in the given ground truth.

In [5]: # Select example coordinate indexes
def accumulate_coordinates(acc, item):

coord, value = item
acc[value].append(coord)
return acc

true_value_coordinates = reduce(
accumulate_coordinates,
np.ndenumerate(ground_truth),
{k: [] for k in np.unique(ground_truth)})

Randomise the samples, and then select the first 20
for coordinates in true_value_coordinates.values():

shuffle(coordinates)

Select 20 of those random samples
random_sample_coordinates = {

k: v[:20]
for k, v in true_value_coordinates.items()

}

Sample Data, with the structure True, X, Y, R, G, B, FE, LE, NIR
samples = np.ndarray(shape=(20*4, 9), dtype=float)
row = 0
for true, random_samples in random_sample_coordinates.items():

for x, y in random_samples:
samples[row] = [

true,
x,
y,
images["r"][1][x, y],
images["g"][1][x, y],
images["b"][1][x, y],
images["fe"][1][x, y],
images["le"][1][x, y],
images["nir"][1][x, y]

]
row += 1

samples = pd.DataFrame(samples, columns=[
"Ground Truth", "X", "Y", "Red RGB",
"Green RGB", "Blue RGB", "LIDAR First Echo",
"LIDAR Last Echo", "Near Infra-Red"])

4

3 Objective 2: Establish Gaussian Model for Each Class with the train-
ing samples.

In [6]: class Gaussian:
"""
The Gaussian class provides a simple abstraction over a gaussian
distribution.
"""

def __init__(self, data):
"""
Initialise the Gaussian Distribution

Parameters

data : array

The datapoints for which the gaussian distribution is being fit
over

"""
self.mean = np.mean(data)
self.std = np.std(data)

def check_fit(self, data):
"""
Return a likeliness estimation for a given datapoint compared with the
gaussian distribution.

Parameters

data : number

The data being compared to the distribution.

Returns

float

The likeliness that the point lies within the distribution.
"""
return sst.norm.pdf(data, self.mean, self.std)

def __repr__(self):
return f"(m={self.mean}, s={self.std})"

In [7]: # Store and compute the gaussian distributions for each input space and ground
category.
sample_sets = {

"building": samples[samples["Ground Truth"] == 1].drop(
["Ground Truth", "X", "Y"], axis=1),

"vegetation": samples[samples["Ground Truth"] == 2].drop(
["Ground Truth", "X", "Y"], axis=1),

"car": samples[samples["Ground Truth"] == 3].drop(
["Ground Truth", "X", "Y"], axis=1),

"ground": samples[samples["Ground Truth"] == 4].drop(
["Ground Truth", "X", "Y"], axis=1),

}

5

sample_set_gaussians = {
category: {

column: Gaussian(set[column])
for column in set.keys()

}
for category, set in sample_sets.items()

}

Graph each fitted gaussian.
x = np.linspace(0, 255, 256)
for dataset in data.drop(["X", "Y"], axis=1).keys():

plt.figure()
for (i, (_, gaussian)) in enumerate(sample_set_gaussians.items()):

gset = gaussian[dataset]
plt.title(f"{dataset}")
plt.plot(x, gset.check_fit(x), color=true_cmap(i), linewidth=3)

plt.legend(sample_set_gaussians.keys())

6

The above distributions show each image and how each ground category maps to it based on
the random samples and the Gaussian distribution estimations.

These will be used to evaluate how likely it is that any given pixel fits into a given class.

4 Objective 3: Apply Maximum Likelihood and Classify Each Pixel
into a Class

In [8]: # Compute the likelihood of each category
category_likelihood = {}

for pixel in data.to_dict(orient='records'):
coordinate_likelihoods = {}
for category, gaussian in sample_set_gaussians.items():

coordinate_likelihoods[category] = {}
for key, value in pixel.items():

if key in "XY":
continue

coordinate_likelihoods[category][key] = \
gaussian[key].check_fit(value)

category_likelihood[(pixel["Y"], pixel["X"])] = coordinate_likelihoods

In [9]: # Evaluate the most likely overall, based on the lowest SSE

most_likely_category = {}
for pixel, cats in category_likelihood.items():

lowest_error = float("inf")
lowest_error_cat = "ERR"
for category, likelihoods in cats.items():

sse = sum([
(1 - likelihood)**2
for likelihood in likelihoods.values()

]) # Compute SSE, lowest SSE is most likely
if sse < lowest_error:

lowest_error = sse
lowest_error_cat = category

most_likely_category[pixel] = lowest_error_cat

In [10]: ground_guess = np.ndarray(shape=ground_truth.shape)

7

for coord, truth in most_likely_category.items():
ground_guess[coord] = {

"building": 1,
"vegetation": 2,
"car": 3,
"ground": 4

}[truth]

After the above code is evaluated, each pixel is given a unique prediction for which type of
category it falls in. This is done by taking the sum of the squares of the probabilities that any
given pixel does not lie within a category, and taking the lowest: and therefore the most likely
category.

5 Objective 4: Evaluate the Classification Accuracy

In [11]: plt.figure()
plt.axis('off')
plt.title("MAT Data: Ground Truth")
plt.imshow(

ground_truth, interpolation='nearest',
origin='lower', cmap=true_cmap)

plt.colorbar(ticks=range(5))
plt.clim(0.5, 4.5)

plt.figure()
plt.axis('off')
plt.title("Computed Ground Likelihood")
plt.imshow(

ground_guess, interpolation='nearest',
origin='lower', cmap=true_cmap)

plt.colorbar(ticks=range(5))
plt.clim(0.5, 4.5)

The algorithm was highly effective at identifying the general positions of buildings, though
was quick to mistake them with foliage: perhapse due to them both sharing higher Near Infrared
Readings. The ground and cars were largely correct identified, likely due to their extremely low
standard deviations in their LIDAR readings, as they are often of a consistent height. Foliage was
the weakest to identify, likely due to it’s varying colours and LIDAR response times.

8

In [12]: cm = skm.confusion_matrix(ground_truth[0], ground_guess[0])
plt.figure()
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
cm
plt.imshow(cm, interpolation='nearest')
plt.title("Normalized Confusion Matrix")
plt.colorbar()
plt.clim(0, 1)
ticks_marks = np.arange(len(np.unique(ground_truth)))
plt.xticks(

ticks_marks,
["1 - Building", "2 - Vegetation", "3 - Car", "4 - Ground"],
rotation=45)

_ = plt.yticks(
ticks_marks,
["1 - Building", "2 - Vegetation", "3 - Car", "4 - Ground"])

The above assessment based on visual inspection is validated by the confusion matrix, which
shows a higher certainty regarding ground and cars than most other data points.

6 Conclusion

To conclude, supervised learning through maximum likeliness estimation over fitted Gaussian
distributions was an effective means of estimating the ground level topology based on aerially
sourced telemetry. The fitting process would likely benefit from a higher sample size and a wider
range of images to be tested and trained against, however with the low supervised sample size
of 20 I think it is highly unlikely that a large degree of over fitting occurred, though this might
warrant further investigation

9

	Initial Setup
	Objective 1: Select training samples from the given source data based on information in the given ground truth.
	Objective 2: Establish Gaussian Model for Each Class with the training samples.
	Objective 3: Apply Maximum Likelihood and Classify Each Pixel into a Class
	Objective 4: Evaluate the Classification Accuracy
	Conclusion

