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INTRODUCTION

Evolution strategies have been a known optimisation technique since the 1960s and

70s. They are based on principles of evolution through continuous improvement via

artificial selection to maximise a given function. Despite their relative age, in 2017 a

paper by Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever was

published under the OpenAI organisation [1]. This paper explored the idea that the

relatively ancient technique of using evolution strategies for optimisation might give

comparable results to more modern reinforcement learning techniques in a number

of problem domains. In this report I’ll be analysing the paper and findings in it, as

well as the associated blog post [2].

The approach taken by OpenAI is to use evolution strategies to optimise a neural

network which takes in an environmental state and outputs the desired action or

actions for an agent in that environment to take.

In a more modern reinforcement learning situation this might be done through

backpropagation, where various iterations are run of simulating the environment,

and each time the agent takes an action the weights of the neural network are adjusted

through backpropagation to make that action more or less likely depending on the

success of the network.

The approach taken by OpenAI here is different however, in that it instead uses

evolution strategies to define a policy function in which a vector representing the

entire state of the underlying neural network are used as inputs, and a single reward

number is given as an output. These inputs are then modified and altered through

evolution strategies to attempt to maximise that reward output, rather than back-

propagation the reward to adjust weights in the network directly.

This fashion of updating a neural network has several obvious immediate benefits,

and that is that given enough randomness to the selection and evolution process, and

enough possibility for mutation, the network will be able to find a global maximum

(given enough time) rather than simply some good-enough local maximum to the

reward function. In the case of the latter, some reinforcement techniques such as

backpropagation can find a local maximum to their reward, in which any significant

change to the network would result in a decreased reward and so is undesirable.

The former means that through evolution strategies, it is possible to escape a local
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Fig. 1 ES optimisation process, with only two parameters and a reward function

(red = high, blue = low). At each iteration the current parameter value is white, the

Gaussian samples are in black, and the estimated gradient is the white arrow.

maximum through substantial mutation. Evolution strategies will still however often

find themselves selecting a local maximum, but the chance of this can be decreased

by increasing the extremeness of mutation.

A visual intuition for how the evolutionary strategies discussed work can be seen

in Figure 1 (page 3) which depicts the gradual convergence on a local maximum in a

given field of pottential values.

Over the course of this report, vectors are used heavily in notation, as well as

vectors of vectors. As such, notationally I will be using the following.
~A is a vector.

~Bj is the scalar at index j in the vector B where B is a vector of scalars.

~Ci is the vector at index i in the vector C where C is a vector of vectors.

~Ci
j is the scalar at index j in the vector ~Ci where C is a vector of vectors of

scalars.

1 THE PROBLEM ADDRESSED

A number of issues are addressed by using Evolution Strategies over more modern

Reinforcement Learning strategies. The first and foremost of these is completely

eliminating the need for backpropagation or value function estimation. This aids

in writing code as it can be kept simpler and much easier to understand, and allows

for exploring non differential networks.
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The next problem that is addressed and possibly the most significant, is that it

is notoriously difficult to parallelise backpropagation [3]. This is not the cast with

Evolution Strategies, which are extremely easy to parallelise. As is explained in

the paper and summarised in the blog post, Evolution Strategies depend on only

a few small scalar values to be communicated between parallel execution agents.

This massively reduces the amount of synchronisation that is required, and enables

Evolution Strategies to be run on a far larger distributed computation cluster without

diminishing returns when compared with backpropagation reliant reinforcement

learning.

Another problem with reinforcement learning strategies is that often they will

take a long time to begin producing at all functional outputs, let alone optimal ones.

This is due to its stochastic solution space exploration, and is somewhat mitigated

by techniques used in Q-Learning where agents can be made to perform consistent

action rather than indecision or contradictory action. This issue is mitigated entirely

by evolutionary strategies as they can use a structured exploration with deterministic

policies enabling for immediate results obtained in a consistent fashion, with an

eventual trend towards a locally optimum network.

Value estimation can often be difficult in some problem spaces, and this can result

in an unclear means of determining success and providing sensible feedback to the

neural network with reinforcement learning. This also occurs when actions have

long lasting effects and the time window for an episode is long in both opportunity

for action and cumulative in consequence of action. This is a common scenario

in many video-game playing applications, or robotic agents interacting with their

environment. Evolutionary Strategies are able to provide a better gradient to an

optimum solution in these situations.

2 MATHEMATICAL MODEL OF LEARNING AND GRADIANT ASCENT

The objective function for evolution strategies is a function that takes knowledge of

its computation environment, and a set of configurations for a neural network. It

internally constructs the neural network and then produces a correctness or reward

value for the given output of its internal neural network. This might be a direct

match against known categories for training a categorisation problem, or might be
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the outcome of playing a simple game or even a more complex game (such as the

NES games used to test the effectiveness of the system in the paper as demonstrated

by the blog post).

By having the objective function being optimised use the weighting of a neural

network as inputs, the neural network is optimised by review of its weights and

output, not by its input and output. This eliminates the need for backpropogation

and provides a simple and easily understood objective function and optimisation

learning process.

The class of evolution strategies used to optimise the objective function are called

natural evolution strategies [4] [5] [6] [7] [8] [9].

Algorithm 1 (page 7) is derived from approximating samples from the following

score function estimator to optimise over ~θ.

∇~θ E~ε∼N (~0,I){F (~θ + σ~ε )} =
1

σ
E~ε∼N (~0,I){(F (~θ + σ~ε ))~ε } 1

Understanding the above mathematical formula requires understanding a high

degree of syntax, so I will state it in words as follows, which might then help with

understanding.

In the above, F represents the objective function. This takes in a vector of weights

a parameter, uses them to construct a neural network, tests that neural network

against a given simulation, and returns a scalar reward value representing the effec-

tiveness of that network.

Theta is then the vector of weights that are passed in to construct the neural

network.

Epsilon is used in all contexts as representing a vector of random Gaussian noise

that can be applied to the weights of the network. It has this context because it is

always used following E~ε∼N (~0,1) explained further down.

Sigma represents a known scalar standard deviation which is set and can be

adjusted to make the effective area of the search space of the Gaussian blurred

weights larger or smaller. This can be visually understood as understanding that in

Figure 1 (page 3) a larger standard deviation would result in the area encompassed

by the cluster of black dots being larger, and a smaller standard deviation would

result in a more focused cluster of black dots.
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E is used when analysing a stochastic function such as the evaluation of a neural

network with given weights, to take the expected value of the function. This in a way

can be thought of as a weighted average of its possible values.

∇~θ simply expresses that the final value we are computing is the derivative or

slope of the function with respect to ~θ, which is then used with gradient ascent to

perform optimisation and learning.

This gives the entire left hand side of that equation a more understandable

meaning.∇~θ E~ε∼N (~0,I){F (~θ+σ~ε )}which is the value the right hand side evaluates, can

be read as “The gradient with respect to a given vector of weights, for the expected

value of a function taken with epsilon being a vector of Gaussian noise, where the

function is the objective function applied to the given vector of weights adjusted by

Gaussian noise by a certain known factor.”

The right hand side of the expression then goes on to demonstrate the computa-

tion of this value, which is used to perform the optimisation and learning.

First, let us look at the innermost part of the function. The same scoring function

evaluated on Gaussian noise adjusted weights is multiplied by the given Gaussian

noise vector. This creates a vector where Gaussian noise has been multiplied by the

reward function, and will result in noise that resulted in a decrease in score function

having all of its positive shifts weighted negatively, and its negative shifts weighted

positively. While if the reward is successful and therefore positive, the vector will

keep its existing signage. Either way they will be multiplied by the severity of the

success or failure.

An expected value is then taken of this, which represents a collecting and averag-

ing of those clustered black dots in Figure 1 (page 3). to find a location that has the

best average positive movement in the score function (gradient ascent).

This point is then adjusted to fall on the outskirts of the searched region by

dividing it by the standard deviation, allowing for consistent movement based on

the area searched regardless of how extreme or muted the output of the expected

value for the computed results of each of the black points.

Of course it is worth noting, that the expected value is based on an infinite possible

set of Gaussian distribution size appropriate vectors. This cannot be fully computed

through existing computation methods, and so is explored through random sampling



7

which results in the cluster of black dots in 1. In the above where I speak of the black

dots in the above it would be more appropriate to consider them a black circle with

a radius proportional to the set standard deviation.

3 EVOLUTIONARY STRATEGY ALGORITHM

The algorithms as presented in the original paper are presented in a format more

congruent with mathematical expectations than with programming. Following is a

restatement of the algorithms in a fashion that is much more consistent with modern

programming algorithm descriptions and that should be much more implementable.

The general format of the evolution strategy taken is shown in Algorithm 1

(page 7), which is derived from Equation 1 (page 5).

Algorithm 1: Evolution Algorithm
Input: number of generations g, number of samples per generation s, vector of

initial weights ~θ0, noise standard deviation σ, objective function F ,
learning rate α

for t← 0 to g do
~∆← ~0

repeat s times
~ε ∼ N (~0, I)
~∆← ~∆ + (F (~θt + σ~ε ))~ε

end
~θt+1 ← ~θt + α

sσ
~∆

end
Output: ~θg+1

The output of Algorithm 1 (page 7) will be a set of weights that represents a local

maximum in the possible attainable rewards given by evaluating the network after g

generations.

This can be parallelised as shown in Algorithm 2 (page 8) by generating workers

with known random seeds and known initial parameters, and instead of doing a

loop for each child in a population, instead sending evaluating a worker for each

one and synchronising the returned rewards value scalars. After this, each worker

can evaluate its new network state through knowledge of the initial random state of

every other worker, and the scalar return values that were synchronised.
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Algorithm 2: Parallel Evolution Algorithm
Input: number of generations g, number of samples per generation s, vector of

initial weights ~θ0, number of weights n, noise standard deviation σ,
objective function F , learning rate α, vector of seeds for workers ~Ξ

for t← 1 to s do
initialise worker ~Wt with seed ~Ξt

end
for t← 0 to g do

for i← 1 to s do
on worker ~Wi begin

~ε ∼ N (~0, I)

global ~ri ← F (~θt + σ~ε )

end
end
for i← 1 to s do

await worker ~Wi

end
for i← 1 to s do

on worker ~Wi begin
~∆← ~0

for j ← 1 to s do
~ε ∼ N (~0, 1) with seed ~Ξj on access t× n
~∆← ~∆ + (~rj)~ε

end
~θt+1 ← ~θt + α

sσ
~∆

end
end

end
Output: ~θg+1

4 RESULTS

Two standard experiments were used to test the ES system that was provided, and

the paper and associated blog post found the results competitive with traditional

reinforcement learning based approaches.

The first of these was MuJoCo, or Multi-Join dynamics with Contact. The envi-

ronment is a set of angles that each joint in an agent is in, the expected outputs of the

network are the amount of torque that should be applied to each joint, the reward

function is based on how far forward the agent has moved.
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TABLE 1 MuJoCo Results, with TRPO and ES performance given in timesteps.

Environment % Score TRPO ES ES / TRPO
HalfCheetah 25% -1.35 9.05E+05 1.36E+05 0.15

50% 793.55 1.70E+06 8.28E+05 0.49
75% 1589.83 3.34E+06 1.42E+06 0.43

100% 2385.79 5.00E+06 2.88E+06 0.58
Hopper 25% 877.45 7.29E+05 3.83E+05 0.53

50% 1718.16 1.03E+06 3.73E+06 3.62
75% 2561.11 1.59E+06 9.63E+06 6.06

100% 3403.46 4.56E+06 3.16E+07 6.93
InvertedDoublePendulum 25% 2358.98 8.73E+05 3.98E+05 0.46

50% 4609.68 9.65E+05 4.66E+05 0.48
75% 6874.03 1.07E+06 5.30E+05 0.50

100% 9104.07 4.39E+06 5.39E+06 1.23
InvertedPendulum 25% 276.59 2.21E+05 6.25E+04 0.28

50% 519.15 2.73E+05 1.43E+05 0.52
75% 753.17 3.25E+05 2.55E+05 0.78

100% 1000.00 5.17E+05 4.55E+05 0.88
Swimmer 25% 41.97 1.04E+06 5.88E+05 0.57

50% 70.73 1.82E+06 8.52E+05 0.47
75% 99.68 2.33E+06 1.23E+06 0.53

100% 128.25 4.59E+06 1.39E+06 0.30
Walker2d 25% 957.68 1.55E+06 6.43E+05 0.41

50% 1916.48 2.27E+06 1.29E+07 5.68
75% 2872.81 2.89E+06 2.31E+07 7.99

100% 3830.03 4.81E+06 3.79E+07 7.88

This found that in general, ES reached certain scores less quickly than traditional

reinforcement learning (trust region policy optimisation), though no worse than a

factor of 10. The full results for this can be seen in Table 1 (page 9).

The paper and blog post highlight however, that timesteps are perhaps not the

greatest measure of efficiency, considering that the major speed up gained by using

ES would come from parallelisation and therefore real execution time, not by pure

number of timesteps evaluated.

When looking at the most complex MuJoCo task, a 3D Humanoid, it was pos-

sible to solve with ES by using 1440 CPUs across 80 machines in only 10 minutes.

Compared with 32 A3C workers on one machine which take about 10 hours. This is

because of the high communication bandwidth that is required for parallel reinforce-

ment learning, which is not required by Algorithm 2 (page 8).
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Alongside this, across 720 cores in 1 hour was comparable to A3C 32 cores in 1

day. The full results of the Atari can be seen in Table 2 (page 11). Again this takes

advantage of the trivialised parallelisation and small size of synchronised data to

perform large scale distribution of the problem that would not otherwise be easily

possible with the other AI techniques it is compared with.
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TABLE 2 Atari Games Comparison of Different AI Techniques
Game DQN A3C FF, 1 day HyperNEAT ES FF, 1 hour A2C FF
Amidar 133.4 283.9 184.4 112.0 548.2
Assault 3332.3 3746.1 912.6 1673.9 2026.6
Asterix 124.5 6723.0 2340.0 1440.0 3779.7
Asteroids 697.1 3009.4 1694.0 1562.0 1733.4
Atlantis 76108.0 772392.0 61260.0 1267410.0 2872644.8
Bank Heist 176.3 946.0 214.0 225.0 724.1
Battle Zone 17560.0 11340.0 36200.0 16600.0 8406.2
Beam Rider 8672.4 13235.9 1412.8 744.0 4438.9
Berzerk 0.0 1433.4 1394.0 686.0 720.6
Bowling 41.2 36.2 135.8 30.0 28.9
Boxing 25.8 33.7 16.4 49.8 95.8
Breakout 303.9 551.6 2.8 9.5 368.5
Centipede 3773.1 3306.5 25275.2 7783.9 2773.3
Chopper Command 3046.0 4669.0 3960.0 3710.0 1700.0
Crazy Climber 50992.0 101624.0 0.0 26430.0 100034.4
Demon Attack 12835.2 84997.5 14620.0 1166.5 23657.7
Double Dunk 21.6 0.1 2.0 0.2 3.2
Enduro 475.6 82.2 93.6 95.0 0.0
Fishing Derby 2.3 13.6 49.8 49.0 33.9
Freeway 25.8 0.1 29.0 31.0 0.0
Frostbite 157.4 180.1 2260.0 370.0 266.6
Gopher 2731.8 8442.8 364.0 582.0 6266.2
Gravitar 216.5 269.5 370.0 805.0 256.2
Ice Hockey 3.8 4.7 10.6 4.1 4.9
Kangaroo 2696.0 106.0 800.0 11200.0 1357.6
Krull 3864.0 8066.6 12601.4 8647.2 6411.5
Montezumas Revenge 50.0 53.0 0.0 0.0 0.0
Name This Game 5439.9 5614.0 6742.0 4503.0 5532.8
Phoenix 0.0 28181.8 1762.0 4041.0 14104.7
Pit Fall 0.0 123.0 0.0 0.0 8.2
Pong 16.2 11.4 17.4 21.0 20.8
Private Eye 298.2 194.4 10747.4 100.0 100.0
Q*Bert 4589.8 13752.3 695.0 147.5 15758.6
River Raid 4065.3 10001.2 2616.0 5009.0 9856.9
Road Runner 9264.0 31769.0 3220.0 16590.0 33846.9
Robotank 58.5 2.3 43.8 11.9 2.2
Seaquest 2793.9 2300.2 716.0 1390.0 1763.7
Skiing 0.0 13700.0 7983.6 15442.5 15245.8
Solaris 0.0 1884.8 160.0 2090.0 2265.0
Space Invaders 1449.7 2214.7 1251.0 678.5 951.9
Star Gunner 34081.0 64393.0 2720.0 1470.0 40065.6
Tennis 2.3 10.2 0.0 4.5 11.2
Time Pilot 5640.0 5825.0 7340.0 4970.0 4637.5
Tutankham 32.4 26.1 23.6 130.3 194.3
Up and Down 3311.3 54525.4 43734.0 67974.0 75785.9
Venture 54.0 19.0 0.0 760.0 0.0
Video Pinball 20228.1 185852.6 0.0 22834.8 46470.1
Wizard of Wor 246.0 5278.0 3360.0 3480.0 1587.5
Yars Revenge 0.0 7270.8 24096.4 16401.7 8963.5
Zaxxon 831.0 2659.0 3000.0 6380.0 5.6
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5 CONCLUSIONS

On a surface per-timestep of evaluation level, evolution strategies perform worse

than reinforcement learning techniques. The benefit they have is their ease of large

scale parallelisation with only a single scalar value requiring cross communication

from each worker. This results in an extremely scale efficient model that is not

effective with other techniques. Diminishing returns mar most reinforcement learning

techniques and prevent large scale multiprocessing, however evolution strategies

using the model laid out in Algorithm 2 (page 8) do not suffer from this problem.

It is worth noting that there are however still some diminishing returns, as more

additional processing power was given to ES than was gained in computation speed

up, however these are vastly reduced when compared with parallel backpropagation.

There is one noteworthy downside with the effectiveness of this ES technique,

and that is that is does not perform well on supervised learning problems where it

is possible to compute the exact gradient of the loss function with backpropagation.

This represents a poor performance on tasks such as image classification, speech

recognition, or any other broad categorisation and recognition task. In this respect,

ES is far more effective at dealing in learning how to interface with complex systems

(robotics, gaming) than it is with the generally lower complexity categorisation and

identification problems.

One other aspect of this technique that is not as readily focused on is ease of

understanding and development. The technique is incredibly easy to understand

and implement, and can be taught with little requiring at its core only a basic

understanding of vectors and probability. The reason the approach is effective at

locating local maximums if intuitive, and the entire system functions in a much more

transparent fashion than backpropagation.

This gives ES a gravitas that is not focused on in the report, blog, or any surround-

ing material. With ease of implementation comes a reduced opportunity for bugs

or failures. Implementing neural network training algorithms can be exceptionally

difficult, and given the black-box nature of the programs: very difficult to debug. It

is possible to misconfigure the network and teaching algorithm and still have it learn

and train at a much worse rate simply by chance that the neurons can still establish

some sensible notion of a local maximum, gradient ascent, and connectivity. Tracking
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down bugs in such as system is exceptionally difficult as all might simply appear to

work with reduced efficiency from and outside perspective.
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